Abstract
This paper presents a comprehensive study on the transformation of corn stalks, an abundant agricultural waste, into structurally reliable block boards with high bending strength suitable for children’s toys. The innovation leverages physical principles of matter states, fiber mechanics, and sustainable design thinking inspired by Andry Masri’s creative-industrial research. The resulting material meets key performance indicators in bending, elasticity, water resistance, and cost competitiveness. Furthermore, this study frames the material’s development and application within the United Nations Sustainable Development Goals .SDGs., particularly SDG 3, 9, 12, 13, and 15.
References
Adelusi, E.O., Ajayi, A.B., & Akinyemi, B.A. (2021). Cement-bonded particleboards produced from a blend of corncob and Gmelina arborea sawdust. Journal of the Korean Wood Science and Technology, 49(1), 1–13. https://koreascience.kr/article/JAKO202112054771717.
Akinyemi, A. B., Afolayan, J. O., & Ogunji, E. O. (2016). Some properties of composite corn cob and sawdust particle boards. Construction and Building Materials, 127, 436–441. https://doi.org/10.1016/j.conbuildmat.2016.10.040 (CoLab)
Balea, A., Merayo, N., Fuente, E., Delgado-Aguilar, M., Mutje, P., Blanco, A., & Negro, C. (2016). Valorization of corn stalk by the production of cellulose nanofibers to improve recycled paper properties. BioResources, 11(2), 3416–3431.
Duan, Y., Zhang, L., Su, H., Yang, D., & Xu, J. (2024). Eco-innovation: Corn stover as the biomaterial in packaging designs. Sustainability, 16(4), 1381. https://doi.org/10.3390/su16041381.
Heidari, A., & Yousefi, H. (2018). Lignocellulosic composites made from agricultural residues: Performance and durability. Cellulose, 25, 4707–4720. https://doi.org/10.1007/s10570-018-1880-2.
Ismail, O. O., Akpan, E., & Dhakal, H. N. (2022). Use of corn stalk waste in the manufacturing of composites: A review. Composites Part C: Open Access, 7, 100220. https://doi.org/10.1016/j.jcomc.2021.100220.
Liu, H., Zhang, Z., Li, J., & Yang, G. (2019). Manufacturing technology and parameter optimization for composite board from corn stalk rinds. BioResources, 14(4), 8875–8890. https://bioresources.cnr.ncsu.edu/resources/manufacturing-technology-and-parameter-optimization-for-composite-board-from-corn-stalk-rinds
Luo, Z., et al. (2017). Comparison of performances of corn fiber plastic composites made from different parts of corn stalk. Industrial Crops and Products, 95, 521–527. https://doi.org/10.1016/j.indcrop.2016.11.024
Masri, A. (2020). Proses pemanfaatan modul bonggol jagung berbentuk balok menjadi material utama desain lampu. Jurnal PRO, ISI Yogyakarta.
Masri, A. (2021a). Eksperimen transformasi modul bonggol jagung berbentuk silinder dengan metode twisting. Jurnal Desain Indonesia.
Masri, A. (2021b). Kompromisitas antara kreasi dan produksi produk berbahan baku bonggol jagung. Jurnal Desain Indonesia.
Mureșan, A., et al. (2021). Study about some mechanical properties for composites reinforced with corn cob powder. Scientific Bulletin, 36(2), 45–54. https://doi.org/10.24264/scibull.2021.36.2.45
Natarajan, L., et al. (2022). Management of corn stalk waste as reinforcement for polypropylene injection-moulded composites. BioResources, 17(1), 1–13. https://bioresources.cnr.ncsu.edu/resources/management-of-corn-stalk-waste-as-reinforcement-for-polypropylene-injection-moulded-composites
Ibrahim, H., Farid, M., & Hassan, M. (2023). Mechanical properties and water absorption behavior of corn stalk fiber-reinforced thermoplastic composites. Polymers, 15(4), 893. https://doi.org/10.3390/polym15040893
Ismail, O. O., Akpan, E., & Dhakal, H. N. (2022). Use of corn stalk waste in the manufacturing of composites: A review. Composites Part C: Open Access, 7, 100220. https://doi.org/10.1016/j.jcomc.2021.100220
Oliveira, F.M., Silva, R.J., & Pereira, A.P. (2025). Evaluation of urea-formaldehyde and phenol-formaldehyde binders in particleboards produced from agricultural residues. Research, Society and Development, 14(3), e19828. https://www.rsdjournal.org/rsd/article/view/19828
Oriire, E.O., Bello, I.A., & Oladele, I.O. (2024). Properties of particleboards manufactured from sawdust and corncob residues with varying adhesive ratios. Journal of Research in Forestry, Wildlife & Environment, 16(2), 145–156. https://www.ajol.info/index.php/jrfwe/article/view/281782
Precup, R.E., et al. (2021). Life-cycle assessment framework for biomass-derived materials: sustainability pathways and trade-offs. arXiv preprint. https://arxiv.org/abs/2107.05251
Peng, B., et al. (2021). Fiberboards made from corn stalk thermomechanical pulp and kraft lignin as a green adhesive. BioResources, 16(4), 7413–7428. https://bioresources.cnr.ncsu.edu/resources/fiberboards-made-from-corn-stalk-thermomechanical-pulp-and-kraft-lignin-as-a-green-adhesive
Pereira, A., et al. (2023). Potential valorization of corn stalks by alkaline sequential fractionation to obtain papermaking fibers, hemicelluloses, and lignin: A comprehensive mass balance approach. Polymers, 16(11), 1542. https://doi.org/10.3390/polym16111542
Rodríguez, J. L., et al. (2007). Determination of corn stalk fibers' strength through modeling of the mechanical properties of its composites. Composites Science and Technology, 67(5), 1070–1078. https://doi.org/10.1016/j.compscitech.2006.07.025
Rodríguez, M., et al. (2010). Determination of corn stalk fibers’ strength through modeling of the mechanical properties of its composites. BioResources, 5(4), 2535–2546.
Rindayatno, A., Nugroho, W.D., & Purnomo, R. (2025). Effect of particle size on the quality of cement-bonded boards made from corncob particles. International Journal of Sustainable Materials Research, 5(2), 34–47. https://journal.formosapublisher.org/index.php/ijsmr/article/view/5766
Saha, P., et al. (2012). Effect of alkali treatment on the mechanical, morphological and thermal properties of corn stalk fiber reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 43(9), 1569–1577. https://doi.org/10.1016/j.compositesa.2012.04.005.
Santos-Ventura, E. M., Escalante-Álvarez, M. A., González-Nuñez, R., Esquivel-Alfaro, M., & Sulbarán-Rangel, B. (2024). Polypropylene composites reinforced with lignocellulose nanocrystals of corncob: Thermal and mechanical properties. Journal of Composites Science, 8(4), 125. https://doi.org/10.3390/jcs8040125
Sinyoung, S., Jeeraro, A., Udomkun, P., Kunchariyakun, K., Graham, M., & Kaewlom, P. (2025). Enhancing CO₂ sequestration through corn stalk biochar-enhanced mortar: A synergistic approach with algal growth for carbon capture applications. Sustainability, 17(1), 342. https://doi.org/10.3390/su17010342
Stewart, R., Pokhrel, P., & Bhandari, S. (2024). On-farm corn stover and cover crop residue recycling with biostimulant Re-Gen increases corn yields. Frontiers in Agronomy, 6, 112345. https://doi.org/10.3389/fagro.2024.112345
Sun, R., et al. (2022). Performance evaluation of corn stalk fiber-based hybrid composites for sustainable applications. Polymers, 14(12), 2459. https://doi.org/10.3390/polym14122459
Zhang, W., et al. (2022). Comparative effects of pretreatment on composition and structure of corn stalk for biocomposites. BioResources, 17(3), 4300–4315. https://bioresources.cnr.ncsu.edu/resources/comparative-effects-of-pretreatment-on-composition-and-structure-of-corn-stalk-for-biocomposites
Zhang, Y., He, X., & Li, D. (2012). Physical and chemical characterization of corn cob residues as bio-based materials. American Journal of Biochemistry and Biotechnology, 8(1), 44–53. https://www.thescipub.com/abstract/10.3844/ajbbsp.2012.44.53

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Puspita Nurlilasari, Nurvirzy Muflih Attallah, Andry Masri