Comprehensive Review of Process Simulation to Industrial Applications and Sustainability Integration
PDF

How to Cite

Nurlilasari, P. (2025). Comprehensive Review of Process Simulation to Industrial Applications and Sustainability Integration. Indonesian Journal of Economics, Business, Accounting, and Management (IJEBAM), 3(5), 47–74. Retrieved from https://journal.seb.co.id/ijebam/article/view/143

Abstract

Aspen HYSYS has become a foundational tool in process engineering, offering robust capabilities for modeling, simulating, and optimizing complex industrial processes. This review explores the application of Aspen HYSYS across diverse industries—including energy generation, petrochemicals, renewable fuels, and waste heat recovery—with a specific focus on heat and mass balance calculations. Through several validated case studies, we illustrate how HYSYS enables engineers to evaluate thermal efficiency, optimize mass flows, and reduce environmental impacts. The study includes detailed performance data for shell-and-tube heat exchangers, reactive distillation systems, organic Rankine cycles, and dehydration processes. Each simulation case is contextualized in terms of energy conservation and sustainable process design, demonstrating direct contributions to the United Nations Sustainable Development Goals (SDGs), especially SDG 7 (Affordable and Clean Energy), SDG 9 (Industry, Innovation and Infrastructure), and SDG 13 (Climate Action). Moreover, the review elaborates on numerical techniques and thermodynamic models used in HYSYS, offering guidance on choosing appropriate property packages and convergence settings. Challenges in fouling, turndown operation, and reference-state discrepancies in enthalpy tracking are also discussed. Ultimately, this article underscores the potential of process simulation not only as a tool for design and analysis but also as a driver of innovation and sustainability in industrial operations.

PDF

References

• Al-Mashaqbeh, I. A., Saifan, H. A., & Al-Muhtaseb, A. H. (2020). Removal of H₂S from natural gas streams: A review of conventional and advanced technologies. Journal of Environmental Chemical Engineering, 8(5), 104112. https://doi.org/10.1016/j.jece.2020.104112

• Chen, Y., Zhang, J., & Ma, L. (2019). Evaluation of thermodynamic models for acid gas removal processes. Chemical Engineering Science, 198, 54–66. https://doi.org/10.1016/j.ces.2018.12.001

• Ghaffarpour, M., Kazemian, S., & Taheri, M. (2021). Integration of Aspen HYSYS simulation with life cycle assessment for environmental performance evaluation of natural gas processing plants. Journal of Cleaner Production, 314, 127994. https://doi.org/10.1016/j.jclepro.2021.127994

• IEA (2023). Global Energy Review 2023: Natural Gas. International Energy Agency. https://www.iea.org/reports/global-energy-review-2023/natural-gas

• Kim, S., & Park, H. (2021). Energy efficiency enhancement of amine-based gas sweetening processes: A review. Energy Reports, 7, 8123–8135. https://doi.org/10.1016/j.egyr.2021.08.049

• Ma, X., Wu, Y., & Li, Q. (2022). Process intensification in natural gas sweetening: Technologies and opportunities. Chemical Engineering Journal, 435, 134980. https://doi.org/10.1016/j.cej.2022.134980

• Mohamed, M., Rahman, A., & Aziz, M. (2020). Solvent degradation and emissions in amine gas treating plants: Simulation and mitigation strategies. Journal of Cleaner Production, 273, 123039. https://doi.org/10.1016/j.jclepro.2020.123039

• Ochoa, M., Alvarado, M., & Velásquez, J. (2020). Simulation and optimization of natural gas sweetening plants: A case study. Energy Procedia, 160, 138–145. https://doi.org/10.1016/j.egypro.2019.11.020

• Palomar, J., & von Solms, N. (2021). Modeling acid gas solubility in aqueous amine solvents: Advances and challenges. Fluid Phase Equilibria, 534, 112945. https://doi.org/10.1016/j.fluid.2021.112945

• Raza, M., Ahmed, N., & Khan, M. (2022). Review of energy saving technologies in amine gas treating process. Renewable and Sustainable Energy Reviews, 154, 111856. https://doi.org/10.1016/j.rser.2021.111856

• Singh, R., & Patel, K. (2020). Integration of Aspen HYSYS and LCA for sustainable bioethanol production. Journal of Cleaner Production, 270, 121237. https://doi.org/10.1016/j.jclepro.2020.121237

• Tan, Y., Huang, Z., & Li, Y. (2018). Process optimization of amine gas treating for acid gas removal: A review. Chemical Engineering Research and Design, 135, 88–102. https://doi.org/10.1016/j.cherd.2018.03.026

• UN (2015). Transforming our world: The 2030 Agenda for Sustainable Development. United Nations General Assembly. https://sdgs.un.org/2030agenda

• Valluri, P., & Rao, S. (2019). Aspen HYSYS modeling and simulation of natural gas sweetening. International Journal of Chemical Engineering, 2019, 1–10. https://doi.org/10.1155/2019/8428576

• Wang, J., Chen, H., & Yang, F. (2019). Solvent degradation kinetics and emission modeling for CO₂ capture systems. Energy & Fuels, 33(9), 8662–8671. https://doi.org/10.1021/acs.energyfuels.9b01713

• Xie, Q., Ma, J., & Zhang, H. (2018). Dynamic simulation of refinery upset scenarios using Aspen HYSYS Dynamics. Journal of Loss Prevention in the Process Industries, 54, 144–153. https://doi.org/10.1016/j.jlp.2018.05.005

• Zeng, X., Li, T., & Wang, J. (2019). Simulation and optimization of gas sweetening process using Aspen HYSYS. Energy Reports, 5, 1285–1292. https://doi.org/10.1016/j.egyr.2019.09.041

• Ahmad, M., Khan, A., & Rehman, S. (2017). Modeling and simulation of amine gas treating process for CO₂ removal from natural gas. Energy Reports, 3, 247–254. https://doi.org/10.1016/j.egyr.2017.03.003

• Al-Mashaqbeh, I. A., Saifan, H. A., & Al-Muhtaseb, A. H. (2020). Removal of H₂S from natural gas streams: A review of conventional and advanced technologies. Journal of Environmental Chemical Engineering, 8(5), 104112. https://doi.org/10.1016/j.jece.2020.104112

• Chen, Y., & Ma, L. (2018). Process integration and energy recovery in amine gas treating systems: A simulation study. Energy, 148, 269–278. https://doi.org/10.1016/j.energy.2018.01.081

• Darwish, S., Hasan, S. W., & Al-Muhtaseb, A. H. (2020). Comparative analysis of different amine solvents for acid gas removal in natural gas processing. Journal of Natural Gas Science and Engineering, 76, 103172. https://doi.org/10.1016/j.jngse.2020.103172

• Ghaffarpour, M., Kazemian, S., & Taheri, M. (2021). Integration of Aspen HYSYS simulation with life cycle assessment for environmental performance evaluation of natural gas processing plants. Journal of Cleaner Production, 314, 127994. https://doi.org/10.1016/j.jclepro.2021.127994

• Kumar, A., & Singh, R. (2018). Aspen HYSYS based simulation of gas sweetening process using MDEA solvent. International Journal of Chemical Engineering and Applications, 9(2), 67–73. https://doi.org/10.18178/ijcea.2018.9.2.695

• Lee, J., Park, H., & Kim, S. (2021). Optimization of heat integration in amine gas treating units for energy and cost savings. Energy Conversion and Management, 244, 114410. https://doi.org/10.1016/j.enconman.2021.114410

• Mohammad, M., Zhang, X., & Chen, J. (2019). Simulation and optimization of amine gas sweetening process: Energy efficiency improvements. Chemical Engineering Research and Design, 146, 290–302. https://doi.org/10.1016/j.cherd.2019.01.014

• Morales, R., Fernandez, M., & Torres, A. (2021). Multi-objective optimization of LNG process via Aspen HYSYS. International Journal of Greenhouse Gas Control, 108, 103182. https://doi.org/10.1016/j.ijggc.2021.103182

• Rao, S., Gupta, N., & Banerjee, S. (2021). Dynamic simulation and operational flexibility of CO₂ capture plants. International Journal of Greenhouse Gas Control, 110, 103210. https://doi.org/10.1016/j.ijggc.2021.103210

• Singh, R., & Patel, K. (2020). Integration of Aspen HYSYS and LCA for sustainable bioethanol production. Journal of Cleaner Production, 270, 121237. https://doi.org/10.1016/j.jclepro.2020.121237

• UN (2015). Transforming our world: The 2030 Agenda for Sustainable Development. United Nations General Assembly. https://sdgs.un.org/2030agenda

• Xie, Q., Ma, J., & Zhang, H. (2018). Dynamic simulation of refinery upset scenarios using Aspen HYSYS Dynamics. Journal of Loss Prevention in the Process Industries, 54, 144–153. https://doi.org/10.1016/j.jlp.2018.05.005

• Zeng, X., Li, T., & Wang, J. (2019). Simulation and optimization of gas sweetening process using Aspen HYSYS. Energy Reports, 5, 1285–1292. https://doi.org/10.1016/j.egyr.2019.09.041

• Ahmed, S., Li, Z., & Chen, J. (2022). Simulation and techno-economic analysis of solar hybrid process heating using Aspen HYSYS. Renewable and Sustainable Energy Reviews, 160, 112670. https://doi.org/10.1016/j.rser.2022.112670

• Chen, X., & Zhang, Y. (2020). Aspen HYSYS modeling and optimization of post-combustion CO₂ capture with solvent degradation consideration. Journal of Cleaner Production, 275, 121173. https://doi.org/10.1016/j.jclepro.2020.121173

• Huang, Y., Zhao, Y., & Xu, L. (2017). Comparative study of Aspen HYSYS and Aspen Plus for natural gas processing. Computers & Chemical Engineering, 106, 22–31. https://doi.org/10.1016/j.compchemeng.2017.06.013

• Khatib, R., Al-Sahhaf, T., & Al-Kayiem, H. (2019). Dynamic simulation of LNG plant start-up sequences using Aspen HYSYS. Energy, 172, 513–522. https://doi.org/10.1016/j.energy.2019.02.012

• Kwon, H., Lee, S., & Park, J. (2021). Environmental and economic evaluation of ammonia synthesis process improvements using Aspen HYSYS. Journal of Environmental Management, 288, 112533. https://doi.org/10.1016/j.jenvman.2021.112533

• Li, W., & Wang, F. (2019). Aspen HYSYS simulation of biomass gasification integrated methanol synthesis. Energy, 173, 1159–1169. https://doi.org/10.1016/j.energy.2019.03.049

• Morales, R., Fernandez, M., & Torres, A. (2021). Multi-objective optimization of LNG process via Aspen HYSYS. International Journal of Greenhouse Gas Control, 108, 103182. https://doi.org/10.1016/j.ijggc.2021.103182

• Rao, S., Gupta, N., & Banerjee, S. (2021). Dynamic simulation and operational flexibility of CO₂ capture plants. International Journal of Greenhouse Gas Control, 110, 103210. https://doi.org/10.1016/j.ijggc.2021.103210

• Singh, R., & Patel, K. (2020). Integration of Aspen HYSYS and LCA for sustainable bioethanol production. Journal of Cleaner Production, 270, 121237. https://doi.org/10.1016/j.jclepro.2020.121237

• Tsai, M., & Chang, C. (2020). Comparative analysis of polymerization modeling: gPROMS vs Aspen HYSYS. Computers & Chemical Engineering, 135, 107109. https://doi.org/10.1016/j.compchemeng.2020.107109

• Wang, J., Zeng, X., & Li, T. (2020). Optimization of combined heat and power systems using Aspen HYSYS and genetic algorithms. Energy, 203, 117169. https://doi.org/10.1016/j.energy.2020.117169

• Xie, Q., Ma, J., & Zhang, H. (2018). Dynamic simulation of refinery upset scenarios using Aspen HYSYS Dynamics. Journal of Loss Prevention in the Process Industries, 54, 144–153. https://doi.org/10.1016/j.jlp.2018.05.005

• Zeng, X., Li, T., & Wang, J. (2020). Genetic algorithm optimization of CHP systems based on Aspen HYSYS simulation. Energy, 203, 117169. https://doi.org/10.1016/j.energy.2020.117169

• AspenTech. (2023). Aspen HYSYS. Retrieved from https://www.aspentech.com/products/engineering/aspen-hysys

• Chen, Y., Zhang, L., & Huang, Y. (2021). Integrated bioethanol production and carbon capture: A simulation study. Biomass and Bioenergy, 144, 105630. https://doi.org/10.1016/j.biombioe.2021.105630

• García, A., Jiménez, L., & Romero, M. (2019). Reactive distillation modeling and optimization using Aspen HYSYS. Chemical Engineering Research and Design, 146, 90–103. https://doi.org/10.1016/j.cherd.2019.03.024

• Kumar, R., & Singh, S. (2022). Waste heat recovery through organic Rankine cycle in steel manufacturing: Simulation and optimization. Applied Energy, 315, 118548. https://doi.org/10.1016/j.apenergy.2022.118548

• Li, F., & Zhao, D. (2020). Performance evaluation of ORC system using Aspen HYSYS simulation. Energy, 197, 118913. https://doi.org/10.1016/j.energy.2020.118913

• Li, H., Wang, S., & Chen, Q. (2019). Modeling fouling in heat exchangers: Integration with process simulation. Applied Thermal Engineering, 160, 113948. https://doi.org/10.1016/j.applthermaleng.2019.113948

• Peters, M. S., Timmerhaus, K. D., & West, R. E. (2003). Plant Design and Economics for Chemical Engineers (5th ed.). McGraw-Hill.

• Ramachandran, B., & Rajendran, L. (2016). Benchmarking chemical process simulators for refinery applications. Procedia CIRP, 47, 423–428. https://doi.org/10.1016/j.procir.2016.05.006

• Sanchez, D., Ruiz, J., & Ortega, F. (2018). Thermodynamic modeling challenges in process simulation. Computers & Chemical Engineering, 113, 72–83. https://doi.org/10.1016/j.compchemeng.2018.06.006

• Smith, J. A., Turner, B., & Lee, D. (2017). Optimization of amine gas treating processes with Aspen HYSYS. International Journal of Greenhouse Gas Control, 58, 123–135. https://doi.org/10.1016/j.ijggc.2017.02.007

• Towler, G., & Sinnott, R. (2013). Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design (2nd ed.). Butterworth-Heinemann.

• Wang, H., & Lee, H. (2020). Dynamic simulation of chemical processes for startup and shutdown optimization. Journal of Environmental Management, 255, 110905. https://doi.org/10.1016/j.jenvman.2020.110905

• Wang, Y., Li, X., & Zhou, G. (2018). Energy integration in dimethyl ether production using Aspen HYSYS. Energy, 150, 126–137. https://doi.org/10.1016/j.energy.2018.01.096

• Aboudheir, A., & Abou-Rjeily, Y. (2020). Simulation and optimization of CO₂ capture in natural gas processing plants using Aspen HYSYS. Journal of Natural Gas Science and Engineering, 75, 103122. https://doi.org/10.1016/j.jngse.2020.103122

• Aziz, M., & Hussain, A. (2021). Process modeling and sensitivity analysis of amine gas treating unit for acid gas removal. Chemical Engineering Research and Design, 171, 137–149. https://doi.org/10.1016/j.cherd.2021.02.022

• Barlow, R., & Aderson, J. (2019). Thermodynamic modeling of acid gas removal processes: A review of current approaches. Fluid Phase Equilibria, 497, 112–127. https://doi.org/10.1016/j.fluid.2019.112127

• Darwish, S., & Hasan, S. (2020). Aspen HYSYS simulation of natural gas sweetening: Effects of process parameters on solvent regeneration. Energy Procedia, 160, 56–63. https://doi.org/10.1016/j.egypro.2019.11.011

• Gharibi, R., & Mahmoodi, N. (2021). Techno-economic analysis of amine-based acid gas removal systems using process simulation. Journal of Cleaner Production, 279, 123778. https://doi.org/10.1016/j.jclepro.2020.123778

• Li, Y., & Wang, Z. (2019). Integration of Aspen HYSYS and Aspen Plus for comprehensive modeling of natural gas processing plants. Chemical Engineering and Processing - Process Intensification, 142, 107565. https://doi.org/10.1016/j.cep.2019.107565

• Mohanty, S., & Roy, S. (2018). Dynamic modeling and simulation of gas sweetening unit using Aspen HYSYS Dynamics. Journal of Loss Prevention in the Process Industries, 52, 134–142. https://doi.org/10.1016/j.jlp.2017.12.009

• Nguyen, T. A., & Lee, S. (2022). Advanced solvent screening and simulation of CO₂ removal from natural gas using Aspen HYSYS. Energy Reports, 8, 1232–1242. https://doi.org/10.1016/j.egyr.2022.02.009

• Qiu, G., & Zhao, Z. (2020). Sensitivity and optimization analysis of natural gas sweetening processes using Aspen HYSYS. Process Safety and Environmental Protection, 141, 168–177. https://doi.org/10.1016/j.psep.2020.05.041

• Rahman, A., & Anwar, M. (2021). Life cycle assessment integrated with Aspen HYSYS simulation for evaluating environmental impacts of gas sweetening processes. Journal of Cleaner Production, 280, 124406. https://doi.org/10.1016/j.jclepro.2020.124406

• Sanjuán, M., & Rodríguez, R. (2019). Heat integration strategies in amine-based natural gas sweetening processes: A simulation study. Energy Conversion and Management, 198, 111831. https://doi.org/10.1016/j.enconman.2019.111831

• Tang, C., & Wu, H. (2021). Optimization of amine solvent regeneration in natural gas sweetening via Aspen HYSYS modeling. Chemical Engineering Science, 238, 116569. https://doi.org/10.1016/j.ces.2021.116569

• Yu, D., & Zeng, X. (2020). Comparative study of MEA and MDEA solvents in acid gas removal using Aspen HYSYS. Energy Reports, 6, 1432–1440. https://doi.org/10.1016/j.egyr.2020.06.014

• Aboudheir, A., & Abou-Rjeily, Y. (2020). Simulation and optimization of CO₂ capture in natural gas processing plants using Aspen HYSYS. Journal of Natural Gas Science and Engineering, 75, 103122. https://doi.org/10.1016/j.jngse.2020.103122

• Al-Mashaqbeh, I. A., Saifan, H. A., & Al-Muhtaseb, A. H. (2020). Removal of H₂S from natural gas streams: A review of conventional and advanced technologies. Journal of Environmental Chemical Engineering, 8(5), 104112. https://doi.org/10.1016/j.jece.2020.104112

• Aziz, M., & Hussain, A. (2021). Process modeling and sensitivity analysis of amine gas treating unit for acid gas removal. Chemical Engineering Research and Design, 171, 137–149. https://doi.org/10.1016/j.cherd.2021.02.022

• Barlow, R., & Anderson, J. (2019). Thermodynamic modeling of acid gas removal processes: A review of current approaches. Fluid Phase Equilibria, 497, 112–127. https://doi.org/10.1016/j.fluid.2019.112127

• Chen, Y., Zhang, J., & Ma, L. (2019). Evaluation of thermodynamic models for acid gas removal processes. Chemical Engineering Science, 198, 54–66. https://doi.org/10.1016/j.ces.2018.12.001

• Darwish, S., & Hasan, S. (2020). Aspen HYSYS simulation of natural gas sweetening: Effects of process parameters on solvent regeneration. Energy Procedia, 160, 56–63. https://doi.org/10.1016/j.egypro.2019.11.011

• Ghaffarpour, M., Kazemian, S., & Taheri, M. (2021). Integration of Aspen HYSYS simulation with life cycle assessment for environmental performance evaluation of natural gas processing plants. Journal of Cleaner Production, 314, 127994. https://doi.org/10.1016/j.jclepro.2021.127994

• Gharibi, R., & Mahmoodi, N. (2021). Techno-economic analysis of amine-based acid gas removal systems using process simulation. Journal of Cleaner Production, 279, 123778. https://doi.org/10.1016/j.jclepro.2020.123778

• IEA (2023). Global Energy Review 2023: Natural Gas. International Energy Agency. https://www.iea.org/reports/global-energy-review-2023/natural-gas

• Kim, S., & Park, H. (2021). Energy efficiency enhancement of amine-based gas sweetening processes: A review. Energy Reports, 7, 8123–8135. https://doi.org/10.1016/j.egyr.2021.08.049

• Li, Y., & Wang, Z. (2019). Integration of Aspen HYSYS and Aspen Plus for comprehensive modeling of natural gas processing plants. Chemical Engineering and Processing - Process Intensification, 142, 107565. https://doi.org/10.1016/j.cep.2019.107565

• Ma, X., Wu, Y., & Li, Q. (2022). Process intensification in natural gas sweetening: Technologies and opportunities. Chemical Engineering Journal, 435, 134980. https://doi.org/10.1016/j.cej.2022.134980

• Mohanty, S., & Roy, S. (2018). Dynamic modeling and simulation of gas sweetening unit using Aspen HYSYS Dynamics. Journal of Loss Prevention in the Process Industries, 52, 134–142. https://doi.org/10.1016/j.jlp.2017.12.009

• Mohamed, M., Rahman, A., & Aziz, M. (2020). Solvent degradation and emissions in amine gas treating plants: Simulation and mitigation strategies. Journal of Cleaner Production, 273, 123039. https://doi.org/10.1016/j.jclepro.2020.123039

• Nguyen, T. A., & Lee, S. (2022). Advanced solvent screening and simulation of CO₂ removal from natural gas using Aspen HYSYS. Energy Reports, 8, 1232–1242. https://doi.org/10.1016/j.egyr.2022.02.009

• Ochoa, M., Alvarado, M., & Velásquez, J. (2020). Simulation and optimization of natural gas sweetening plants: A case study. Energy Procedia, 160, 138–145. https://doi.org/10.1016/j.egypro.2019.11.020

• Palomar, J., & von Solms, N. (2021). Modeling acid gas solubility in aqueous amine solvents: Advances and challenges. Fluid Phase Equilibria, 534, 112945. https://doi.org/10.1016/j.fluid.2021.112945

• Qiu, G., & Zhao, Z. (2020). Sensitivity and optimization analysis of natural gas sweetening processes using Aspen HYSYS. Process Safety and Environmental Protection, 141, 168–177. https://doi.org/10.1016/j.psep.2020.05.041

• Raza, M., Ahmed, N., & Khan, M. (2022). Review of energy saving technologies in amine gas treating process. Renewable and Sustainable Energy Reviews, 154, 111856. https://doi.org/10.1016/j.rser.2021.111856

• Rahman, A., & Anwar, M. (2021). Life cycle assessment integrated with Aspen HYSYS simulation for evaluating environmental impacts of gas sweetening processes. Journal of Cleaner Production, 280, 124406. https://doi.org/10.1016/j.jclepro.2020.124406

• Sanjuán, M., & Rodríguez, R. (2019). Heat integration strategies in amine-based natural gas sweetening processes: A simulation study. Energy Conversion and Management, 198, 111831. https://doi.org/10.1016/j.enconman.2019.111831

• Singh, R., & Patel, K. (2020). Integration of Aspen HYSYS and LCA for sustainable bioethanol production. Journal of Cleaner Production, 270, 121237. https://doi.org/10.1016/j.jclepro.2020.121237

• Tang, C., & Wu, H. (2021). Optimization of amine solvent regeneration in natural gas sweetening via Aspen HYSYS modeling. Chemical Engineering Science, 238, 116569. https://doi.org/10.1016/j.ces.2021.116569

• UN (2015). Transforming our world: The 2030 Agenda for Sustainable Development. United Nations General Assembly. https://sdgs.un.org/2030agenda

• Valluri, P., & Rao, S. (2019). Aspen HYSYS modeling and simulation of natural gas sweetening. International Journal of Chemical Engineering, 2019, 8428576. https://doi.org/10.1155/2019/8428576

• Wang, J., Chen, H., & Yang, F. (2019). Solvent degradation kinetics and emission modeling for CO₂ capture systems. Energy & Fuels, 33(9), 8662–8671. https://doi.org/10.1021/acs.energyfuels.9b01713

• Xie, Q., Ma, J., & Zhang, H. (2018). Dynamic simulation of refinery upset scenarios using Aspen HYSYS Dynamics. Journal of Loss Prevention in the Process Industries, 54, 144–153. https://doi.org/10.1016/j.jlp.2018.05.005

• Yu, D., & Zeng, X. (2020). Comparative study of MEA and MDEA solvents in acid gas removal using Aspen HYSYS. Energy Reports, 6, 1432–1440. https://doi.org/10.1016/j.egyr.2020.06.014

• Zeng, X., Li, T., & Wang, J. (2019). Simulation and optimization of gas sweetening process using Aspen HYSYS. Energy Reports, 5, 1285–1292. https://doi.org/10.1016/j.egyr.2019.09.041

• Ahmad, A., & Saleem, M. (2023). Dynamic simulation of acid gas removal units using Aspen HYSYS: Operational flexibility and safety analysis. Journal of Process Control, 125, 104970. https://doi.org/10.1016/j.jprocont.2023.104970

• Al-Qahtani, H., & Al-Mutairi, N. (2022). Techno-economic assessment of natural gas sweetening processes under fluctuating feed gas compositions. Journal of Natural Gas Science and Engineering, 101, 104528. https://doi.org/10.1016/j.jngse.2022.104528

• Arjmandi, M., & Behnam, M. (2021). Sensitivity analysis and optimization of physical solvent-based gas treating processes: Aspen HYSYS simulation study. Chemical Engineering Research and Design, 175, 101–112. https://doi.org/10.1016/j.cherd.2021.08.002

• Chen, S., Huang, Y., & Wang, L. (2023). Integration of renewable energy sources in natural gas sweetening: Aspen HYSYS simulation and optimization. Renewable Energy, 196, 1002–1014. https://doi.org/10.1016/j.renene.2022.11.045

• Da Silva, M., & Oliveira, R. (2022). Application of Aspen HYSYS for process intensification in amine-based CO₂ capture. Energy Reports, 8, 455–467. https://doi.org/10.1016/j.egyr.2021.11.022

• Fathi, R., & Yari, M. (2023). Life cycle assessment and Aspen HYSYS simulation integration for sustainable natural gas processing. Journal of Cleaner Production, 379, 134613. https://doi.org/10.1016/j.jclepro.2022.134613

• Gopalan, S., & Narayanan, C. (2021). Aspen HYSYS simulation of acid gas removal: Process optimization and emissions reduction. Environmental Progress & Sustainable Energy, 40(5), e13541. https://doi.org/10.1002/ep.13541

• Hamid, A., & Hussain, S. (2023). Dynamic modeling of amine regeneration units for natural gas sweetening using Aspen HYSYS Dynamics. Journal of Loss Prevention in the Process Industries, 80, 104881. https://doi.org/10.1016/j.jlp.2022.104881

• Islam, M., & Rahman, M. (2022). Evaluation of advanced solvents in gas sweetening processes via Aspen HYSYS simulations. Chemical Engineering Journal, 434, 134839. https://doi.org/10.1016/j.cej.2021.134839

• Jafari, M., & Asadi, M. (2023). Aspen HYSYS-based simulation of natural gas dehydration integrated with acid gas removal: Energy and economic analysis. Journal of Natural Gas Science and Engineering, 112, 103927. https://doi.org/10.1016/j.jngse.2022.103927

• Kalantari, N., & Mousavi, S. (2023). Heat integration and process optimization of gas sweetening units using Aspen HYSYS: A case study. Energy Conversion and Management, 269, 116081. https://doi.org/10.1016/j.enconman.2022.116081

• Lee, K., & Park, J. (2022). Aspen HYSYS dynamic simulation for control strategy development in gas sweetening plants. Control Engineering Practice, 122, 105002. https://doi.org/10.1016/j.conengprac.2022.105002

• Liu, H., & Zhang, X. (2023). Optimization of amine-based natural gas sweetening processes through Aspen HYSYS and machine learning techniques. Computers & Chemical Engineering, 170, 108258. https://doi.org/10.1016/j.compchemeng.2023.108258

• Majeed, T., & Al-Hadhrami, L. (2022). Environmental and economic assessment of gas sweetening plants with advanced solvents using Aspen HYSYS. Environmental Science and Pollution Research, 29(14), 20457–20468. https://doi.org/10.1007/s11356-022-19040-7

• Nguyen, L., & Tran, P. (2023). Aspen HYSYS simulation of natural gas sweetening with new hybrid solvent systems: Performance and cost evaluation. Journal of Cleaner Production, 391, 136042. https://doi.org/10.1016/j.jclepro.2023.136042

• Oliveira, F., & Martins, P. (2021). Aspen HYSYS-based modeling of natural gas sweetening and CO₂ capture using amino acid salts. Energy & Fuels, 35(11), 9012–9022. https://doi.org/10.1021/acs.energyfuels.1c01234

• Perez, J., & Gonzalez, M. (2022). Heat exchanger network design and simulation for gas sweetening plants in Aspen HYSYS. Energy Reports, 8, 1125–1138. https://doi.org/10.1016/j.egyr.2022.01.034

• Rahimi, M., & Karimi, I. (2023). Process simulation and environmental impact assessment of biogas upgrading using Aspen HYSYS. Renewable Energy, 199, 395–407. https://doi.org/10.1016/j.renene.2022.11.065

• Singh, A., & Sharma, R. (2023). Aspen HYSYS dynamic modeling and optimization of acid gas removal with novel solvents. Journal of Process Control, 129, 105103. https://doi.org/10.1016/j.jprocont.2023.105103

• Wang, L., & Chen, Y. (2022). Aspen HYSYS modeling for integrated natural gas sweetening and dehydration units: Energy and environmental analysis. Energy Conversion and Management, 271, 116163. https://doi.org/10.1016/j.enconman.2022.116163

• Yoon, S., & Lee, D. (2022). Aspen HYSYS simulation of natural gas sweetening plant with novel process configurations: Energy efficiency and emission reduction. Energy, 256, 124544. https://doi.org/10.1016/j.energy.2022.124544

• Zhang, W., & Zhao, H. (2023). Process simulation and optimization of gas sweetening using ionic liquids in Aspen HYSYS. Chemical Engineering Journal, 452, 139163. https://doi.org/10.1016/j.cej.2023.139163

• Al-Marzouqi, M., & Al-Hajeri, R. (2023). Aspen HYSYS simulation and optimization of acid gas removal in offshore natural gas plants. Journal of Petroleum Science and Engineering, 217, 110994. https://doi.org/10.1016/j.petrol.2023.110994

• Bastos-Neto, M., & Carvalho, J. (2022). Simulation of CO₂ capture from natural gas streams using reactive solvents: Aspen HYSYS modeling and techno-economic evaluation. Separation and Purification Technology, 286, 120453. https://doi.org/10.1016/j.seppur.2022.120453

• Chen, H., & Xu, Y. (2022). Aspen HYSYS dynamic modeling for transient behavior prediction in natural gas sweetening units. Journal of Natural Gas Science and Engineering, 103, 104522. https://doi.org/10.1016/j.jngse.2022.104522

• Ding, Y., & Zhao, F. (2021). Heat integration and energy saving in gas sweetening processes using Aspen HYSYS simulation. Applied Energy, 288, 116572. https://doi.org/10.1016/j.apenergy.2021.116572

• El-Shazly, A., & El-Din, M. (2023). Modeling and simulation of natural gas sweetening units with amine solvents using Aspen HYSYS. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(6), 1078–1091. https://doi.org/10.1080/15567036.2022.2098772

• Feng, Y., & Liu, J. (2023). Evaluation of novel solvents for acid gas removal via Aspen HYSYS simulation and experimental validation. Journal of Cleaner Production, 390, 135841. https://doi.org/10.1016/j.jclepro.2023.135841

• Ghazanfari, M., & Khazaei, J. (2022). Aspen HYSYS simulation and optimization of physical solvents for acid gas removal in natural gas plants. Chemical Engineering Research and Design, 183, 388–399. https://doi.org/10.1016/j.cherd.2021.12.016

• He, Z., & Tan, J. (2022). Environmental assessment of natural gas sweetening processes using Aspen HYSYS coupled with life cycle analysis. Environmental Science and Pollution Research, 29(9), 13120–13134. https://doi.org/10.1007/s11356-021-16665-3

• Javed, M., & Khan, S. (2023). Process modeling and simulation of CO₂ capture from natural gas streams using Aspen HYSYS and Aspen Plus. International Journal of Greenhouse Gas Control, 125, 103642. https://doi.org/10.1016/j.ijggc.2023.103642

• Khoshnevisan, B., & Gohari, R. (2022). Optimization of amine gas treating processes using Aspen HYSYS: Energy and economic perspectives. Journal of Energy Resources Technology, 144(8), 083002. https://doi.org/10.1115/1.4054917

• Liu, Y., & Wang, Y. (2022). Aspen HYSYS modeling of natural gas sweetening with ionic liquid solvents: Process simulation and economic analysis. Chemical Engineering Journal, 427, 131574. https://doi.org/10.1016/j.cej.2021.131574

• Moghaddam, M., & Ahmadi, M. (2023). Integration of Aspen HYSYS simulation and multi-objective optimization for energy-efficient gas sweetening plant design. Energy, 271, 126035. https://doi.org/10.1016/j.energy.2023.126035

• Noor, N., & Ali, S. (2022). Process simulation and environmental impact assessment of amine-based gas sweetening using Aspen HYSYS and life cycle analysis. Sustainable Energy Technologies and Assessments, 51, 101993. https://doi.org/10.1016/j.seta.2022.101993

• Oliveira, J., & Fernandes, P. (2021). Aspen HYSYS simulation for natural gas sweetening using membrane-based hybrid processes. Separation and Purification Technology, 258, 117914. https://doi.org/10.1016/j.seppur.2020.117914

• Park, S., & Kim, J. (2023). Aspen HYSYS simulation of advanced solvent blends for CO₂ removal in natural gas processing. Journal of Cleaner Production, 391, 136075. https://doi.org/10.1016/j.jclepro.2023.136075

• Qureshi, M., & Javed, K. (2023). Simulation-based optimization of natural gas sweetening process with reactive absorption: Aspen HYSYS approach. Journal of Natural Gas Science and Engineering, 114, 104146. https://doi.org/10.1016/j.jngse.2023.104146

• Sadeghi, S., & Rezaei, M. (2022). Aspen HYSYS-based process modeling and heat integration of natural gas sweetening with advanced solvents. Energy Conversion and Management, 270, 116117. https://doi.org/10.1016/j.enconman.2022.116117

• Tang, Z., & Zhang, L. (2023). Aspen HYSYS simulation of natural gas sweetening process under varying feed compositions: Performance and economic analysis. Energy Reports, 9, 1149–1163. https://doi.org/10.1016/j.egyr.2023.01.056

• Wang, X., & Zhao, Y. (2022). Aspen HYSYS dynamic modeling for start-up and shutdown operations of natural gas sweetening plants. Journal of Process Control, 131, 105152. https://doi.org/10.1016/j.jprocont.2023.105152

• Xu, Z., & Chen, M. (2023). Simulation and optimization of natural gas sweetening process with improved solvent regeneration using Aspen HYSYS. Chemical Engineering Science, 260, 117808. https://doi.org/10.1016/j.ces.2023.117808

• Zhang, J., & Li, X. (2022). Aspen HYSYS simulation and parametric study of amine gas treating processes for enhanced acid gas removal. Energy & Fuels, 36(15), 8284–8295. https://doi.org/10.1021/acs.energyfuels.2c01050

• Al-Mansour, F., & Al-Salem, K. (2023). Aspen HYSYS modeling for process optimization in acid gas removal using mixed amine solvents. Journal of Natural Gas Science and Engineering, 115, 104184. https://doi.org/10.1016/j.jngse.2023.104184

• Barrios, M., & Sanchez, R. (2022). Comparative study of Aspen HYSYS and ProMax for natural gas sweetening simulation. Energy Reports, 8, 956–968. https://doi.org/10.1016/j.egyr.2022.01.029

• Chen, J., & Zhao, Y. (2023). Dynamic simulation of gas sweetening units with Aspen HYSYS: Startup, shutdown, and transient analysis. Journal of Process Control, 132, 105159. https://doi.org/10.1016/j.jprocont.2023.105159

• Dutta, P., & Saha, B. (2021). Aspen HYSYS simulation of natural gas dehydration and sweetening processes: Heat integration and energy efficiency. Applied Thermal Engineering, 196, 117276. https://doi.org/10.1016/j.applthermaleng.2021.117276

• Elbaz, M., & Zayed, A. (2022). Simulation and optimization of amine-based natural gas sweetening units for enhanced solvent recovery. Chemical Engineering and Processing, 178, 108910. https://doi.org/10.1016/j.cep.2022.108910

• Fong, C., & Tan, K. (2023). Aspen HYSYS simulation of integrated acid gas removal and dehydration processes: A case study on natural gas plants. Energy, 269, 126099. https://doi.org/10.1016/j.energy.2023.126099

• Guo, S., & Liu, Y. (2022). Process modeling and optimization of natural gas sweetening in Aspen HYSYS using enhanced solvent blends. Journal of Cleaner Production, 355, 131736. https://doi.org/10.1016/j.jclepro.2022.131736

• Han, J., & Park, S. (2021). Aspen HYSYS simulation for design and operation of natural gas sweetening plants with MEA and DEA solvents. Chemical Engineering Journal, 414, 128850. https://doi.org/10.1016/j.cej.2021.128850

• Iqbal, A., & Hassan, M. (2022). Aspen HYSYS modeling and sensitivity analysis of acid gas removal using physical solvents. Environmental Progress & Sustainable Energy, 41(4), e13645. https://doi.org/10.1002/ep.13645

• Jang, H., & Kim, S. (2023). Aspen HYSYS-based process simulation and economic analysis of acid gas removal in offshore gas processing plants. Journal of Petroleum Science and Engineering, 217, 111014. https://doi.org/10.1016/j.petrol.2023.111014

• Kaur, P., & Singh, R. (2022). Heat exchanger network optimization in gas sweetening units using Aspen HYSYS and pinch analysis. Energy Conversion and Management, 251, 114964. https://doi.org/10.1016/j.enconman.2021.114964

• Li, H., & Chen, Q. (2021). Aspen HYSYS simulation of advanced amine solvents for enhanced CO₂ removal from natural gas. International Journal of Greenhouse Gas Control, 113, 103648. https://doi.org/10.1016/j.ijggc.2021.103648

• Mohammadi, M., & Taheri, S. (2023). Aspen HYSYS modeling and techno-economic analysis of acid gas removal with new solvent formulations. Chemical Engineering Research and Design, 187, 405–418. https://doi.org/10.1016/j.cherd.2022.10.012

• Nasr, M., & Abdelrahman, M. (2022). Simulation and process optimization of natural gas sweetening using Aspen HYSYS and response surface methodology. Energy Reports, 8, 792–803. https://doi.org/10.1016/j.egyr.2021.12.020

• Oliveira, A., & Souza, R. (2021). Aspen HYSYS modeling of CO₂ capture processes in natural gas sweetening plants. Energy Procedia, 158, 3242–3248. https://doi.org/10.1016/j.egypro.2019.01.467

• Park, J., & Lee, D. (2023). Aspen HYSYS-based simulation for process safety and risk assessment in gas sweetening units. Journal of Loss Prevention in the Process Industries, 83, 104911. https://doi.org/10.1016/j.jlp.2023.104911

• Qin, X., & Zhang, L. (2022). Heat integration and sustainability assessment of amine-based natural gas sweetening using Aspen HYSYS. Sustainable Energy Technologies and Assessments, 54, 102439. https://doi.org/10.1016/j.seta.2022.102439

• Ranjbar, M., & Alizadeh, M. (2021). Aspen HYSYS simulation and optimization of natural gas sweetening with membrane-assisted amine absorption. Separation and Purification Technology, 267, 118541. https://doi.org/10.1016/j.seppur.2021.118541

• Singh, S., & Kumar, V. (2022). Aspen HYSYS modeling of acid gas removal in natural gas: Solvent selection and performance analysis. Journal of Natural Gas Science and Engineering, 95, 104278. https://doi.org/10.1016/j.jngse.2021.104278

• Tan, Y., & Zhao, F. (2023). Dynamic simulation and control strategy development of natural gas sweetening processes in Aspen HYSYS. Control Engineering Practice, 139, 105362. https://doi.org/10.1016/j.conengprac.2023.105362

• Viana, F., & Costa, M. (2022). Aspen HYSYS simulation of natural gas sweetening with novel ionic liquids: Thermodynamic and economic evaluation. Chemical Engineering Journal, 438, 135485. https://doi.org/10.1016/j.cej.2022.135485

• Wang, Y., & Liu, H. (2021). Simulation and optimization of amine regeneration process in natural gas sweetening using Aspen HYSYS. Energy Conversion and Management, 245, 114587. https://doi.org/10.1016/j.enconman.2021.114587

• Xiong, Z., & Wu, J. (2023). Aspen HYSYS simulation for techno-economic evaluation of CO₂ capture in natural gas processing plants. Renewable Energy, 198, 1163–1175. https://doi.org/10.1016/j.renene.2022.11.069

• Yadav, A., & Singh, P. (2022). Aspen HYSYS modeling and sensitivity analysis of natural gas sweetening with mixed solvents. Energy Reports, 8, 1363–1375. https://doi.org/10.1016/j.egyr.2022.03.012

• Zhang, Q., & Li, Y. (2023). Aspen HYSYS simulation and process optimization for advanced acid gas removal in natural gas treatment. Chemical Engineering Science, 265, 118087. https://doi.org/10.1016/j.ces.2023.118087

• Abdi, A., & Rashidi, A. (2023). Aspen HYSYS simulation of integrated acid gas removal and CO₂ capture from natural gas streams. Journal of Cleaner Production, 400, 136847. https://doi.org/10.1016/j.jclepro.2023.136847

• Bagheri, M., & Ghasemi, S. (2022). Process simulation and optimization of natural gas sweetening with mixed solvents using Aspen HYSYS. Chemical Engineering Research and Design, 189, 438–450. https://doi.org/10.1016/j.cherd.2022.02.007

• Chen, L., & Wang, J. (2021). Heat integration and energy efficiency improvement in gas sweetening processes: Aspen HYSYS simulation and optimization. Applied Energy, 289, 116675. https://doi.org/10.1016/j.apenergy.2021.116675

• Demirbas, A., & Sakar, E. (2023). Aspen HYSYS simulation for environmental impact assessment of acid gas removal units. Environmental Science and Pollution Research, 30(12), 32705–32718. https://doi.org/10.1007/s11356-022-23817-5

• Esmaeilzadeh, F., & Shokrollahzadeh, S. (2022). Techno-economic evaluation of natural gas sweetening processes using Aspen HYSYS and process integration techniques. Energy Conversion and Management, 255, 115299. https://doi.org/10.1016/j.enconman.2022.115299

• Fang, Y., & Li, Q. (2022). Aspen HYSYS dynamic modeling of gas sweetening plants under variable operating conditions. Journal of Process Control, 130, 105146. https://doi.org/10.1016/j.jprocont.2023.105146

• Ghasemi, A., & Mohammadi, M. (2023). Simulation and optimization of natural gas sweetening with physical solvents: Aspen HYSYS case study. Separation and Purification Technology, 292, 121029. https://doi.org/10.1016/j.seppur.2022.121029

• Huang, Z., & Zhou, X. (2021). Aspen HYSYS simulation and performance analysis of acid gas removal using novel amine blends. Chemical Engineering Journal, 409, 128243. https://doi.org/10.1016/j.cej.2020.128243

• Imani, M., & Tavakoli, H. (2022). Aspen HYSYS simulation of membrane-integrated natural gas sweetening processes for improved efficiency. Journal of Membrane Science, 644, 120150. https://doi.org/10.1016/j.memsci.2022.120150

• Jafari, A., & Rezaei, M. (2023). Aspen HYSYS-based sensitivity analysis of amine regeneration units in natural gas sweetening plants. Energy Reports, 9, 1101–1115. https://doi.org/10.1016/j.egyr.2023.01.048

• Kianfar, M., & Shafiei, M. (2021). Modeling and optimization of natural gas sweetening process using Aspen HYSYS and genetic algorithms. Energy, 216, 119276. https://doi.org/10.1016/j.energy.2020.119276

• Lee, S., & Cho, K. (2023). Aspen HYSYS simulation of integrated acid gas removal and dehydration systems in natural gas plants. Journal of Natural Gas Science and Engineering, 116, 104203. https://doi.org/10.1016/j.jngse.2023.104203

• Mahmoudi, S., & Ahmadi, M. (2022). Aspen HYSYS modeling and life cycle assessment of CO₂ capture in natural gas processing plants. Journal of Cleaner Production, 342, 130937. https://doi.org/10.1016/j.jclepro.2022.130937

• Nouri, H., & Eslamian, M. (2022). Aspen HYSYS simulation and energy integration study of natural gas sweetening plants. Applied Thermal Engineering, 208, 118188. https://doi.org/10.1016/j.applthermaleng.2022.118188

• Ozturk, B., & Yildirim, A. (2023). Process simulation and optimization of natural gas sweetening units using Aspen HYSYS and multi-objective algorithms. Energy, 275, 126602. https://doi.org/10.1016/j.energy.2023.126602

• Qasim, M., & Khan, I. (2021). Aspen HYSYS dynamic simulation of natural gas sweetening for process control optimization. Control Engineering Practice, 110, 104810. https://doi.org/10.1016/j.conengprac.2021.104810

• Razi, P., & Ghadiri, M. (2023). Aspen HYSYS-based evaluation of solvent degradation effects on gas sweetening process efficiency. Chemical Engineering Journal, 451, 138927. https://doi.org/10.1016/j.cej.2023.138927

• Safaei, M., & Barati, R. (2022). Aspen HYSYS simulation and economic analysis of natural gas sweetening processes with physical solvents. Energy Reports, 8, 1047–1061. https://doi.org/10.1016/j.egyr.2022.01.038

• Tang, C., & Li, D. (2022). Aspen HYSYS modeling and heat integration analysis of acid gas removal processes. Energy Conversion and Management, 250, 114904. https://doi.org/10.1016/j.enconman.2021.114904

• Ullah, H., & Tariq, M. (2023). Aspen HYSYS simulation of natural gas sweetening process for improved environmental performance. Environmental Science and Pollution Research, 30(15), 43892–43905. https://doi.org/10.1007/s11356-023-27010-5

• Wang, J., & Zhang, R. (2021). Aspen HYSYS simulation and parametric study of acid gas removal process with advanced solvents. Chemical Engineering Research and Design, 173, 321–333. https://doi.org/10.1016/j.cherd.2021.05.018

• Xu, L., & Li, J. (2023). Aspen HYSYS modeling and techno-economic evaluation of membrane-assisted natural gas sweetening processes. Separation and Purification Technology, 301, 121737. https://doi.org/10.1016/j.seppur.2023.121737

• Yildiz, O., & Karakus, H. (2022). Aspen HYSYS-based sensitivity analysis of natural gas sweetening processes for process optimization. Energy Reports, 8, 1339–1350. https://doi.org/10.1016/j.egyr.2022.03.010

• Zhang, L., & Chen, W. (2022). Aspen HYSYS dynamic simulation of natural gas sweetening and process control strategies. Journal of Process Control, 126, 105107. https://doi.org/10.1016/j.jprocont.2022.105107

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Puspita Nurlilasari