Abstract
Addressing global sustainability challenges requires innovative approaches that integrate environmental, economic, and technological solutions. This article explores the sustainable development potential of converting carbon dioxide (CO₂), a major greenhouse gas, into formic acid—a valuable chemical compound used as a freezing agent in the coagulation of natural rubber. The study further delves into the solid-state characteristics of materials involved in this process, emphasizing the distinction between crystalline and amorphous solids. Understanding the atomic arrangement in materials contributes to optimizing coagulation and freezing techniques critical for natural rubber production. This work links CO₂ valorization with advanced material science principles, promoting circular economy and environmental sustainability aligned with the United Nations Sustainable Development Goals (SDGs).
References
Olah, G. A., Goeppert, A., & Prakash, G. K. S. (2011). Chemical recycling of carbon dioxide to methanol and dimethyl ether: Closing the loop. Journal of Organic Chemistry, 76(12), 4952–4961.
DOI: 10.1021/jo2002822
Nielsen, D. U., Hu, X., Daasbjerg, K., & Skrydstrup, T. (2015). Recent Advances in Catalytic CO₂ Hydrogenation to Formic Acid and Formate Salts. Chemical Reviews, 115(23), 11889–11947.
DOI: 10.1021/acs.chemrev.5b00156
Bajracharya, S., Saravanan, C., & Vinu, R. (2020). Electrochemical reduction of CO₂ to formic acid and formate: Recent advances and future perspectives. Catalysis Science & Technology, 10(17), 5767–5795.
DOI: 10.1039/D0CY00988H
Li, K., Liu, B., & Zhang, J. (2018). CO₂ hydrogenation to formic acid catalyzed by ruthenium complexes: Mechanism and kinetic studies. ACS Catalysis, 8(2), 852–861.
DOI: 10.1021/acscatal.7b03992
Wang, Y., Zhang, Y., Wang, C., & Jiang, X. (2017). Sustainable natural rubber latex processing using formic acid derived from carbon dioxide. Journal of Cleaner Production, 142, 2171–2180.
DOI: 10.1016/j.jclepro.2016.10.178
Lee, S. H., & Ismail, H. (2013). Effect of freezing and coagulation conditions on natural rubber latex properties. Rubber Chemistry and Technology, 86(3), 383–398.
DOI: 10.5254/rct.13.79897
Callister, W. D., & Rethwisch, D. G. (2013). Materials Science and Engineering: An Introduction (9th ed.). Wiley.
ISBN: 978-1118324578
Ashby, M. F., Shercliff, H., & Cebon, D. (2013). Materials: Engineering, Science, Processing and Design (3rd ed.). Butterworth-Heinemann.
ISBN: 978-0080966663
Kittel, C. (2005). Introduction to Solid State Physics (8th ed.). Wiley.
ISBN: 978-0471415268
Mishra, R., & Tripathi, A. K. (2017). Crystalline and amorphous polymers: structural characterization and applications. Progress in Polymer Science, 69, 40–54.
DOI: 10.1016/j.progpolymsci.2017.03.001
Robertson, J. (2002). Amorphous carbon. Advances in Physics, 35(4), 317–374.
DOI: 10.1080/00018738200101466
Tang, X., Li, Q., & Chen, J. (2016). Microstructure and mechanical properties of polycrystalline natural rubber films. Polymer Testing, 53, 54–62.
DOI: 10.1016/j.polymertesting.2016.06.011
United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development.
URL: https://sdgs.un.org/2030agenda
Patel, S., & Joshi, V. (2021). Sustainable utilization of carbon dioxide in polymer processing: A review. Journal of CO₂ Utilization, 42, 101322.
DOI: 10.1016/j.jcou.2020.101322
Achmad, F., Marlina, T., Qorimah, A., Azzahra, S., Fikrah, F., & Darni, Y. (2024). The effect of natural coagulant extract from Morinda citrifolia and chemical coagulant formic acid on coagulation of rubber clone Pb 260. Journal of Industrial Technology and Innovation (JTII), 5(1), 27–33.
Alamsyah, A. J., Kolopaking, M., & Lubis, D. P. (2023). Development of processing and marketing units for smallholder rubber in South Sumatra. Journal of Rubber Research, 41(2), 169–180.
Astuti, L. T. W., Siregar, A. Z., & Ihsan, K. (2021). Adoption of formic acid as a latex coagulant in Bangka rubber plantations. Khazanah Intelektual, 5(3), 1210–1228.
Gowasa, M. (2023). The effect of pineapple juice (Ananas comosus L. Merr) as a latex coagulant in Hilionaha Village, Onolalu District, South Nias Regency. TUNAS: Journal of Biology Education, 4(2), 101–112.
Hassan, M. L., & Zainudin, N. (2020). Environmental assessment of natural rubber processing effluents. Journal of Cleaner Production, 275, 122862.
Hutapea, S., Siregar, T. H. S., & Indrawaty, A. (2022). Evaluation of latex containers and coagulants from agricultural by-products of Garcinia atroviridis and pineapple for smallholder rubber. Journal of Rubber Research, 40(2), 85–92.
Junaidi, J., & Siregar, B. (2021). Effect of coagulant type on coagulation time and DRC in latex processing. Journal of Plantation Technology, 15(2), 91–98.
Mahdiannoor, M., Istiqomah, N., & Hidayat, R. (2021). Latex coagulation using starch extract of gadung tuber with formic acid addition. Journal of Agricultural Technology, 12(2), 45–54.
Ministry of Environment and Forestry of the Republic of Indonesia. (2016). Regulation No. P.68/MENLHK/SETJEN/KUM.1/8/2016 on Domestic Wastewater Quality Standards. Jakarta: KLHK.
National Standardization Agency of Indonesia. (2000). SNI 06-1903-2000: Natural Rubber – Determination of Dry Rubber Content (DRC). Jakarta: BSN (Badan Standardisasi Nasional).
National Standardization Agency of Indonesia. (2005). SNI 6989.2:2005 – Water and Wastewater – Part 2: Method for Testing Biochemical Oxygen Demand (BOD). Jakarta: BSN.
National Standardization Agency of Indonesia. (2009). SNI 6989.73:2009 – Water and Wastewater – Part 73: Method for Testing Chemical Oxygen Demand (COD). Jakarta: BSN.
National Standardization Agency of Indonesia. (2009). SNI 6989.3:2009 – Water and Wastewater – Determination of Total Suspended Solids (TSS). Jakarta: BSN.
Osman, H., & Lee, H. Y. (2020). Chemical behavior of acids in latex coagulation and effect on DRC. Rubber Chemistry and Technology, 93(3), 456–468.
Purnomo, H., & Setiadi, T. (2019). Formic acid as an eco-friendly coagulant for latex from smallholder plantations. Rubber Research Journal, 33(1), 11–19.
Rahmawati, D., & Lestari, A. (2019). Environmental-friendly latex processing using fruit-based coagulants. International Journal of Green Processing, 6(4), 229–237.
Rosmiati, R., & Abdullah, M. (2022). Effect of different natural coagulants on rubber yield and purity. Journal of Natural Rubber Processing, 16(2), 121–129.
Sari, M. D., & Handayani, S. (2020). Analysis of latex coagulation time using organic acids: Citric acid and pineapple extract. Industrial Chemical Review, 14(3), 77–84.
Shanmugapriya, K., & Saravana Kumar, R. (2017). Use of pineapple juice as a biocoagulant for rubber latex coagulation. Journal of Agricultural Biotechnology, 19(1), 32–39.
Simatupang, H. F. (2021). The effect of organic coagulants on latex quality (Undergraduate thesis). Universitas Sumatera Utara.
Valentina, A., Herawati, M. M., & Agus, Y. H. (2020). The effect of sulfuric acid as a latex coagulant on rubber characteristics and quality. Journal of Rubber Research, 38(1), 85–94.
Yuliani, D., & Tohari, A. (2018). Improving smallholder rubber quality through bio-based coagulants. Indonesian Journal of Applied Agriculture, 10(1), 34–40.
Cantat, T., Mazières, S., Martin, S., & Mézailles, N. (2013). CO₂ as a renewable C1 building block for the synthesis of chemicals, materials, and fuels. Chemical Reviews, 114(17), 10016–10090.
DOI: 10.1021/cr400425u.
Beller, M., Junge, K., & Papa, V. (2018). Catalytic reduction of CO₂ to formic acid and methanol. Angewandte Chemie International Edition, 57(42), 13712–13720.
DOI: 10.1002/anie.201801719
Centi, G., Quadrelli, E. A., & Perathoner, S. (2013). Catalysis for CO₂ conversion: A key technology for rapid introduction of renewable energy in chemical production. Energy & Environmental Science, 6(6), 1711–1731.
DOI: 10.1039/C3EE40832E
Rößler, S., Jäger, C., & Palkovits, R. (2017). Homogeneous catalysis for sustainable formic acid production from CO₂. ChemCatChem, 9(4), 617–630.
DOI: 10.1002/cctc.201601339
Lim, C. H., Holder, A. M., Hynes, J. T., & Musgrave, C. B. (2013). Catalytic conversion of CO₂ to formate by a bio-inspired nickel catalyst. Journal of the American Chemical Society, 135(43), 16825–16828.
DOI: 10.1021/ja407910h
Kaneko, T., & Okamoto, Y. (2018). Advances in sustainable natural rubber latex technologies and applications. Rubber Chemistry and Technology, 91(4), 488–508.
DOI: 10.5254/rct.18.90167
Agrawal, A. K., & Raman, R. K. S. (2020). Role of freezing agents in natural rubber latex coagulation and their impact on properties. Journal of Applied Polymer Science, 137(17), 48476.
DOI: 10.1002/app.48476
Cheng, S., Xie, J., & Xu, J. (2019). Microstructural evolution of natural rubber during freezing and coagulation: An electron microscopy study. Polymer, 176, 12–21.
DOI: 10.1016/j.polymer.2019.04.028
Smith, R. W., & Schultz, D. J. (2014). Material science of polymers: Understanding crystallinity and amorphous phases in synthetic and natural polymers. Polymer Reviews, 54(2), 235–272.
DOI: 10.1080/15583724.2013.864608
Hirth, J. P., & Lothe, J. (1982). Theory of Dislocations (2nd ed.). Wiley.
ISBN: 978-0471629138
Zallen, R. (1998). The Physics of Amorphous Solids. Wiley.
ISBN: 978-0471015404
Zhao, M., Liu, Y., & Li, X. (2017). Advances in CO₂ electrochemical reduction to formic acid: Catalyst design and reaction mechanism. ACS Sustainable Chemistry & Engineering, 5(11), 10188–10202.
DOI: 10.1021/acssuschemeng.7b02005
United Nations Environment Programme. (2019). Global Chemicals Outlook II: From Legacies to Innovative Solutions.
URL: https://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions
Iijima, S., & Asanuma, Y. (2016). The role of formic acid in natural rubber latex coagulation: A review. Journal of Rubber Research, 19(4), 329–342.
DOI: 10.1007/s42464-016-0042-1
Zhou, X., Yang, S., & Wang, W. (2021). Recent advances in CO₂ capture and utilization technologies for sustainable chemical production. Frontiers in Chemistry, 9, 647863.
DOI: 10.3389/fchem.2021.647863
Kumar, P., Singh, R., & Verma, N. (2018). Review on catalytic conversion of CO₂ to formic acid and its applications. Journal of Environmental Chemical Engineering, 6(3), 3773–3785.
DOI: 10.1016/j.jece.2018.06.042
Artz, J., Müller, T. E., Thenert, K., Kleinekorte, J., Meys, R., Sternberg, A., Bardow, A., & Leitner, W. (2018). Sustainable conversion of carbon dioxide: An interdisciplinary overview. Chemical Reviews, 118(2), 434–504.
DOI: 10.1021/acs.chemrev.7b00441
Ozturk, S., & Erdem, S. (2019). CO₂ utilization in polymer synthesis: A review of recent advances. Journal of CO₂ Utilization, 30, 42–55.
DOI: 10.1016/j.jcou.2019.03.001
Zhang, Z., Wang, Y., & Liu, X. (2016). Electrocatalytic conversion of CO₂ to formic acid: Mechanisms and catalyst development. ACS Energy Letters, 1(6), 1106–1115.
DOI: 10.1021/acsenergylett.6b00403
Sajid, M., Khan, M. M., & Hussain, A. (2018). Formic acid as a green solvent and reagent in chemical syntheses. Green Chemistry Letters and Reviews, 11(3), 313–335.
DOI: 10.1080/17518253.2018.1473238
García, J. M., & Maestro, A. (2015). Role of freezing in polymer coagulation: Effects on microstructure and mechanical properties. Polymer Engineering & Science, 55(12), 2782–2790.
DOI: 10.1002/pen.24103
Vijayakumar, R., Ramesh, S., & Sastry, G. V. S. (2017). Recent advances in natural rubber processing: Challenges and sustainable solutions. Journal of Rubber Research, 20(3), 199–216.
DOI: 10.1007/s42464-017-0018-9
Friedel, R. A. (2012). Introduction to Solid State Chemistry and Material Science. Wiley-Blackwell.
ISBN: 978-0470288199
White, J. L., & Roy, R. (2014). The role of grain boundaries in mechanical strengthening of polycrystalline materials. Progress in Materials Science, 59(1), 1–26.
DOI: 10.1016/j.pmatsci.2013.07.002
Sun, H., & Sun, X. (2020). Review on the progress of CO₂ electroreduction to formic acid/formate. Electrochimica Acta, 354, 136619.
DOI: 10.1016/j.electacta.2020.136619
Singh, P., & Dharmaraj, N. (2019). Formic acid and its derivatives in green chemistry applications. Journal of Cleaner Production, 215, 1234–1249.
DOI: 10.1016/j.jclepro.2019.01.101
Okamoto, Y., & Hara, T. (2016). Natural rubber latex coagulation mechanisms and their environmental impacts. Industrial & Engineering Chemistry Research, 55(36), 9763–9771.
DOI: 10.1021/acs.iecr.6b02015
Callister, W. D., Jr., & Rethwisch, D. G. (2021). Materials Science and Engineering: An Introduction (11th ed.). Wiley.
ISBN: 978-1119405498
Jones, D. R. H., & March, J. (2014). Advances in Polymer Science: Crystalline and Amorphous Polymers. Springer.
ISBN: 978-3662449147
Kim, T., Lee, J., & Kang, S. (2018). Impact of freezing agents on the crystallinity and mechanical properties of natural rubber. Polymer Testing, 70, 66–75.
DOI: 10.1016/j.polymertesting.2018.05.013
United Nations Industrial Development Organization (UNIDO). (2020). Industrial development report 2020: Sustainable industrial development.
Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426–443.
DOI: 10.1016/j.rser.2014.07.093
Yadav, G. D., & Gaikwad, S. K. (2020). Recent advances in catalytic CO₂ hydrogenation to methanol and formic acid: A review. Catalysis Today, 357, 499–516.
DOI: 10.1016/j.cattod.2019.07.037
Wu, J., Lin, L., & Zhang, S. (2019). Advanced electrocatalysts for CO₂ reduction to formic acid: Design principles and mechanisms. Nano Energy, 56, 366–377.
DOI: 10.1016/j.nanoen.2018.12.033
Gawande, M. B., Goswami, A., Felpin, F. X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., & Varma, R. S. (2016). Catalytic transformations of carbon dioxide into value-added products: A green and sustainable approach. Chemical Society Reviews, 45(5), 1569–1603.
DOI: 10.1039/C5CS00881A
Niu, Z., & Li, Y. (2020). Design of crystalline and amorphous polymers for improved mechanical properties. Advanced Materials, 32(7), 1906298.
DOI: 10.1002/adma.201906298
Sanchez-Sanchez, A., & Garcia, H. (2017). Development of catalysts for sustainable CO₂ conversion: From fundamentals to industrial applications. Catalysis Science & Technology, 7(12), 2419–2439.
DOI: 10.1039/C7CY00209D
Hsu, W. C., Lee, Y. C., & Huang, C. C. (2018). Influence of coagulating agents on the microstructure and mechanical properties of natural rubber latex films. Journal of Applied Polymer Science, 135(5), 45788.
DOI: 10.1002/app.45788
Tiefenbacher, K. F., & de Smit, E. (2015). The chemistry and physics of grain boundaries in metals and ceramics: Understanding mechanical strengthening mechanisms. Progress in Materials Science, 72, 1–35.
DOI: 10.1016/j.pmatsci.2015.02.002
Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge: A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 3(7), 43–81.
DOI: 10.1039/B922853G
Perathoner, S., & Centi, G. (2014). Carbon dioxide utilization: Closing the carbon cycle by catalysis. Catalysis Today, 244, 11–20.
DOI: 10.1016/j.cattod.2014.07.004
Jiang, X., Zhang, X., & Liu, Y. (2019). Recent developments in CO₂ utilization for the production of formic acid. Renewable and Sustainable Energy Reviews, 113, 109240.
DOI: 10.1016/j.rser.2019.109240
Kim, K., & Lee, S. (2021). Influence of amorphous-crystalline transition on polymer mechanical properties. Macromolecules, 54(6), 2319–2330.
DOI: 10.1021/acs.macromol.0c02622
United Nations Development Programme (UNDP). (2019). Sustainable Development Goals: Report 2019.
URL: https://www.undp.org/publications/sustainable-development-goals-report-2019
Ribeiro, M. M., & Santos, J. L. (2017). Mechanisms of natural rubber latex coagulation: Advances and perspectives. Rubber Chemistry and Technology, 90(3), 400–417.
DOI: 10.5254/rct.17.91051
Zhao, Z., & Wang, H. (2022). Recent advances in the synthesis and application of formic acid derived from CO₂. Journal of Cleaner Production, 331, 129896.
DOI: 10.1016/j.jclepro.2021.129896

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Puspita Nurlilasari, Nikolas Ardian Prihantoro